
Creating user interfaces for econometric

routines with JStatCom: An example for Ox

Markus Krätzig

Humboldt-Universität zu Berlin, Institute for Statistics and Econometrics

mk@mk-home.de

First version: 16 June 2004
Current version: 31 July 2004

Abstract

JStatCom is a new software framework that simplifies the creation of graphi-

cal user interface components for mathematical procedures. 1 It is written in Java

and offers a coherent approach to creating applications for data based analysis.

Programming with JStatCom is efficient, because existing algorithms written in

various popular matrix languages can be reused with little or no changes required.

The paper shows how this system can be applied to provide an existing Ox program

with a feature-rich graphical user interface with relatively little effort. One of the

advantages of the presented approach is the strict separation of user interface and

algorithm code. Although the framework provides standard solutions for common

tasks, it can be extended and customized in various directions.

Key words:

Java, Object-Oriented Programming, Ox, Econometrics, Software Engineering

1 Introduction

The aim of this work is to present a new approach to creating software for
analyzing data with statistical methods. It mainly addresses developers who
intend to program graphical user interfaces for mathematical algorithms. Al-
though there already exist a number of solutions to this task, the strength of
the presented approach lies in its flexibility and the high level of code reuse
that can be achieved. It also promotes an object-oriented design that allows

1 The URL is www.jstatcom.com.

to create scalable applications that do not tend to become more complicated
and error-prone as more features are added, and thus avoiding the common
entropy problems (Bianchi et al., 2001). This is achieved by exploiting current
developments in software engineering, like Design Patterns (Gamma et al.,
1995) and unit testing (Beck, 1999).

An observation that can be made in areas that heavily depend on the use
of complex mathematical algorithms is, that large and powerful libraries for
math, statistics and graphics are created in different programming languages,
but that there is a lack of an integrating framework that seeks to make those
procedures accessible in a user friendly way. So far there are only isolated
solutions for certain problems, as for example described in Ashworth et al.
(2003), but no attempt has been made to standardize the creation of GUIs for
mathematical applications in a more general context.

The presented software framework JStatCom attempts to fill this gap by defin-
ing classes that are especially designed to link between existing math libraries
and a graphical user interface. It is not focussed on new algorithms for math
and statistics, but concentrates on convenient user interface components, an
efficient variable bookkeeping system and on a powerful and extendable data
model. A special feature of JStatCom is, that existing code from popular ma-
trix oriented languages can easily be reused without even changing it. The
software makes every attempt to be both, developer- and user-friendly. This is
mainly achieved by conceptual simplicity in the class design and by providing
standardized ways to document and test applications based on it.

A very general description of the problems that occur when developing soft-
ware for scientific computing is given by Morven Gentleman in Boisvert and
Tang (2001, preface). The author mentions, that often very complex software
systems are created by scientists rather than software engineers. This can lead
to the common situation, that best practices in software engineering are ig-
nored or not recognized, and that projects can suffer from this deficiency. For
example, object-oriented programming techniques are still not in widespread
use for the development of econometric routines, although the additional effort
to adopt these techniques would pay off quickly (Doornik, 2002). The reason
might be, that it requires a higher effort to lay out the structure of an object-
oriented program, thus thinking more about the software itself instead of the
problem.

However, the procedural, function-based programming style is often a suffi-
ciently powerful way to solve computational problems occurring in economet-
rics. It only fails clearly when it comes to creating graphical user interfaces
and when various different algorithms should be used together.

2

The idea of JStatCom is to let scientists program in their preferred style, but
to use object-oriented techniques to integrate existing algorithms. This way,
domain-specific procedures can be reused and enhanced with a user interface.

2 Existing Solutions for GUI Building

The idea to create user interfaces for scientific procedures is of course not
new and there exist a number of approaches for that task. Most of them use
special features of the respective language to set up predefined, customizable
user interface components that are called from within the control flow of the
program. This concept is used for example by Matlab and Xplore. Although it
is very easy to create simple graphical applications with this strategy, it tends
to clutter GUI related code and algorithm code as the application is growing.
Apart from that, the lack of data encapsulation increases interdependencies
between different parts of the created software, such that it is getting harder to
maintain and extend. There are many examples where Matlab has successfully
been used to create stand-alone applications with a GUI, for example Uhlig
(1999). But due to the growing complexity, those projects are limited in size
and lifetime.

A different solution is provided by the Ox programming language with the ex-
tension OxPack (Doornik and Ooms, 2001). Together with GiveWin, a graph-
ical front-end that provides general functionality for all GUI modules, it can
be used to create graphical interfaces to a model. The difference to the previ-
ously mentioned approach is, that here an object-oriented design is provided
to access GUI functionality. It is necessary to subclass the ModelBase class
which is then used by OxPack to set up the display of the user interface for
the created model. Figure 1 shows the relationship of the relevant classes for
a hypothetical STR modelling class in a UML diagram. For clarity, the repre-
sentation of those classes is simplified, not all public methods are shown. The
UML notation is a widely accepted standard to describe software systems, see
Booch et al. (1999) for an exhaustive discussion.

Subclassing means, that all functionality from a superclass is inherited, but
that behavior can be redefined by providing different implementations for
certain procedures. The signature of these procedures does not change by
overwriting them. A subclass can always be used instead of a superclass, be-
cause it is an instance of that class. Therefore OxPack can take the inherited
class STRModelBase as an argument to set up the user interface according to
the definitions laid out in that class. These definitions describe what kinds
of user interface components are used, which estimation routines are possi-
ble, the name of the model and various other settings. Once understood, this
approach can be used to create user interfaces to different models in a fairly

3

STRModelBase

OxPack

ModelBase

+ IsCrossSection
+ ReceiveModel
+ Estimate

<<use>>

Fig. 1. Class diagram for an interactive Ox program

standardized way. It even provides the option to define HTML helpsets, a
feature that is also implemented for JStatCom modules.

By applying this method of creating user interfaces for econometric models, it
is easy to separate algorithms and GUI related code, because the ModelBase

class is only used to define which algorithms are called according to the user
specification. The actual code for the econometric procedures should be de-
fined in different classes that are independent of the interface definition and
that could even be used by other user-defined models.

There is only one problem with this approach. Between ModelBase and its
subclasses must exist a is-a relationship. This means, that every new model
must be a special case of the general model allowed for in ModelBase. The
ModelBase class is therefore designed to be a generalization of all potential
models used in econometrics. Nevertheless, this restricts the applicability of
the design to compatible modelling situations only. Models that require an
extended set of features or that belong to a different problem domain would
not fit into that framework. Apart from that, the behavior of the user inter-
faces that can be created is pretty much predetermined by the OxPack class.
Following the definition in Gamma et al. (1995) the used design pattern is a
Template Method. A consequence of using this pattern is, that the sequence of
calls cannot be altered, but only the behavior of the single steps. This means,
that the flexibility of this approach to create interactive GUIs for various
different models is somewhat limited.

The more general problem behind this is discussed in Bloch (2001, item 15).
Inheritance is a powerful concept, but it creates static relationships between
classes and should be used only, when a true is-a relationship exists between
the superclass and its subclasses. An alternative concept that can often re-
place inheritance constructs is Composition. Composition means, that a class
is not an ancestor of another class, but that it keeps just a reference to in-
stances of that class to get access to the needed functionality. Applied to the

4

design used by Ox, this means that limitations stem from the fact, that not
every model can be derived from the ModelBase class, or that it might require
special solutions that are not supported in a straightforward manner. An al-
ternative would be to use a composition approach, where different classes or
components provide the necessary functionality to create a GUI. This scheme
could be used by arbitrary model implementations. In fact, this is exactly what
JStatCom does. There is much more freedom to design model interfaces, but
there is also less predefined structure. However, this lack of static structure is
compensated by providing design guidelines that should help the developer to
apply standardized solutions to heterogeneous models.

Compared to Ox with OxPack, JStatCom provides more flexibility to design
applications based on it. It is not limited to a specific model setup anymore,
not even a specific problem-domain, like econometrics. However, this comes of
course at a price. Programming with JStatCom requires some knowledge in
Java. Luckily, the Java programming language is increasingly popular and also
more and more adopted by the science community, see for example Boisvert
et al. (2001). There is an enormously rich documentation available and there
is excellent tool support. The following sections should give an introduction
to the workings of that framework and should motivate developers to give it a
try. This text might also help to decide, when existing solutions are sufficiently
powerful and when it will pay off to learn and use the presented approach.

3 JStatCom System Overview

This section aims at giving a quick overview of the main features and the basic
workings of the framework. It is by no means a complete documentation or
specification. For a deeper understanding, the API documentation in javadoc
format as well as the architecture documentation is required. The first is part
of the JStatCom distribution, the second is still under development at this
moment.

JStatCom is a software framework, which is defined as a set of reusable classes
that make up a reusable design for a class of software (Johnson and Foote,
1988; Deutsch, 1989). This means that it already provides a structure as well
as key functionality for applications in a certain problem domain. The de-
signer of an application can reuse not only classes, but the whole design of the
framework and concentrate on specific aspects of his implementation. Some of
the solutions presented in this section have already been sketched in Benkwitz
(2002), where the first prototype of the system was described.

Figure 2 shows the context of the framework together with the roles that
potential users can have. Typically there is someone with domain specific

5

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

GUI Developer

Scientist

JStatCom

Implement automated
unit tests for procedures

Integrate helpsystem

Implement calls
to algorithms

Create deployable
release

Create GUI for
science model

Provide scientic
documentation

Define requirements
and tests

Provide key algorithm
implementations

<< communicate >>

1..*

1..*

Fig. 2. Use cases for JStatCom

knowledge, who is called Scientist, and somebody who develops the Java GUI
with JStatCom, called the GUI Developer. Only the latter person must inter-
act with the framework. The scientist needs to communicate closely with the
developer to lay out the requirements and to setup a test for the software.
The GUI developer can focus on the Java side, taking the algorithms as given.
JStatCom serves as an architectural layer that handles all tasks that are com-
mon to applications in the given problem domain, which is econometrics for
the current example. Thus it supports the Java developer in incorporating
the procedures quickly, in laying out the GUI with specialized components,
setting up a helpsystem and managing sets of automated unit tests.

The collaboration of components that make up an arbitrary runnable appli-
cation is shown in Figure 3. The application, for example JMulTi, uses the
framework, which itself manages the communication to an external execu-
tion engine. 2 Algorithm implementations have to be provided as resources for
the respective engine. For Ox these would be .ox or .oxo files. GUI devel-

2 JMulTi is the reference application for JStatCom. The URL is www.jmulti.de.

6

JStatCom Engine

JMulTi Procedures

 << Framework >>

 << File >> << Application >>

<< Executable >>

<< Communicate >>

<< Use >> << Call >><< Access >>

JAVA classes and
native libraries for
general tasks

external program or
library, e.g. GAUSS,
Ox, Matlab

files containing
methods to be
executed by engineanalysis

specific classes for
multiple timeseries

Fig. 3. Components of JStatCom

opers create the application, whereas scientists should provide the algorithm
resources.

The top level elements of the system are given in Table 1. Each element
corresponds to a subsystem with coherent functionality that can be separately
looked at. Developers use the components to lay out the user interface, the
data model to represent variables of the model, and the Engine System to
communicate to the respective engine to invoke algorithms. All elements can
be further decomposed into classes or other subsystems. However, for the sake
of clarity, only the Type System, the Symbol Management and the Engine
system are described in greater detail.

Element Name
Implementation Units
(com.jstatcom)

Element Responsibility

Data Model
model

model.control

util

Contains the Type System to define domain spe-
cific data types and the Data Event System to
inform listeners about changes in a data object.
The Symbol Management is used to share data
objects across different components and the Sym-

bol Event System can be used to notify listen-
ers about value changes in a symbol. The Symbol

Control provides graphical components to access
the state of the symbol manager.

Input/Output
io

util

Contains classes to support file handling and the
Data Import System. It also provides a logging
facility.

7

Time Series
ts

util

This module collects all classes that are especially
designed for time series analysis. There are types
to represent dates, date ranges and series, but also
a number of specialized GUI components, like the
time series selector.

Components
component

table

equation

util

This module provides the GUI components that
can be used to display and edit data objects as well
as to gather user information. The Data Table

subsystem contains configurable tables for number
arrays and string arrays, as well as input validating
text fields for numbers, number ranges, dates and
date ranges. The top level application frame is pro-
vided, as well as the module extension mechanism
and the interface to the help system. The subsys-
tem Equation is used to display GUI objects for
models in matrix notation.

Parsers
parser

This module contains generated parsers for the
TSCalc language, for date expressions and for
number ranges.

Engine
engine

engine.gauss

engine.grte

engine.stub

engine.mlab

engine.ox

Contains the abstract engine communications sys-
tem that hides engine specific implementation
details from clients. Subsystems implement the
abstract scheme for concrete engines: Gauss,
GRTE, MatLab, Stub and Ox. 3 It also has the
PCall system for procedure calls.

Table 1: Elements of JStatCom

3.1 Type System

JStatCom needs to represent data internally, because it maintains inputs and
results of econometric computations. Furthermore, it must be easy to let data
objects interact with GUI components that display or change the underlying
values. The data objects that are used within JStatCom on the Java side
must conform to the types that are used by a specific engine, like for example

3 The Stub engine can be used to call compiled dynamic link libraries directly from

Java, without the need to write a dedicated wrapper library first.

8

Ox. The idea is to have a consistent data management system within the
framework that can contain various different types to adjust to any potential
modelling situation. When external procedures are called, those types must
be converted to and from the respective types of the engine. This mechanism
is completely hidden from the developer and managed automatically by the
engine implementations.

The framework uses a Metadata model to achieve the desired flexibility. Core
attributes are standardized for all data types by defining a very general in-
terface JSCData, which all specific types must implement. This interface does
only specify methods that are common to all potential types. Any specialized
functions to access or modify the contents of data objects are defined in im-
plementations of the interface. Type related code and interfaces are therefore
strictly separated. An alternative would have been to use one general VALUE
class that can take on different states, depending on what type of data is
stored. This has the advantage that VALUE instances could always be treated
uniformly, but it tends to create a monolithic class with many unrelated func-
tions for different data types. The presented approach still offers the possibility
to treat JSCData instances uniformly, but only with respect to their interface,
which is quite general. However, the benefits clearly outweigh this drawback,
especially because this approach allows to have an arbitrarily rich type system.

Figure 4 shows the complete interface and all types that are currently imple-
mented. For the sake of clarity, only very few methods of the actual data classes
are given, a complete documentation can be found in the API documentation.
It should be noted that the implemented types are responsible to facilitate
interaction with GUI components and to operate as storage units, instead of
carrying out computations on them directly. For example, the JSCNArray class
is a basic matrix class for JStatCom, but it does not try to compete with ex-
isting Java matrix implementations for linear algebra calculations. The benefit
is, that the interfaces of all types are kept quite simple. However, data can
easily be moved from JSCData types to instances of specialized math classes.
But typically sophisticated linear algebra calculations are done with the em-
ployed engine, which is especially suited and optimized for that purpose. An-
other effect of the taken solution is, that instances of JSCData cannot change
their type anymore after they have been created. This introduces a form of
type-safety for data objects within the framework, which is different from the
operation of most engines, including Ox. For example, a variable declared once
can take OX STRING and OX INT values. The representing object changes its
state accordingly. The benefit is, that the Ox programmer does not have to
specify types explicitely, thus the syntax of the language is simplified. But the
drawback is, that there is a lack of static checking. However, for JStatCom
type-safety is a desired feature, because typically, attempts to change types of
data objects after they have been created would be programming errors.

9

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

JSCData
<< interface >>

+name():String
+type():JSCTypes
+clear():void
+isEmpty():boolean
+copy():JSCData
+isEqual(o:JSCData):boolean
+addJSCDataListener(evtListener:JSCDataListener,evtType:JSCDataEventTypes):void
+setJSCProperty(type:JSCPropertyTypes,val:Object):void
+getJSCProperty(type:JSCPropertyTypes):Object

JSCInt

+intVal():int
+setVal(a:int):void

JSCNumber

+doubleVal():double
+setVal(a:double):void

JSCNArray

+doubleArray():double[][]
+rows():int
+cols():int
+setVal(a:double[][]):void

JSCString

+string():
+setVal(a:String):void

JSCSArray

+stringArray():String[][]
+rows():int
+cols():int
+setVal(a:String[][]):void

JSCVoid

+setVal(a:Object):void

JSCDate

+setVal(a:TSDate):void
+getTSDate():TSDate

JSCDRange

+setVal(a:TSDateRange):void
+getTSDateRange():TSDateRange

Fig. 4. Type System

The following small code example demonstrates, how instances of different
types can be created in Java. A special feature is, that every object must
have a name. This convention was choosen, because it helps to identify vari-
ables during runtime. Especially when error messages are created, it is often
extremely useful to have the name of the variable that was involved. Each
instance of JSCData should be viewed as a named storage container. The code
also shows, how different types can be treated uniformly as a JSCData ar-
ray. This can greatly simplify method signatures. However, if the type-specific
functionality is needed, then a cast to the respective implementation class is
necessary. A save way to do this is to check the type before.

// data instances of various types are created

JSCNArray y = new JSCNArray("yData",

new double[]{2.3, 1.9, 3.3, 5.5, 3.4});

JSCDate start = new JSCDate("start", new TSDate(1960, 1, 4));

JSCInt index = new JSCInt("i", 3);

// all data can be treated uniformly as JSCData

JSCData[] args = new JSCData[]{y, start, index};

10

// if the concrete implementation is needed, casting is necessary

// the type can be checked before

JSCTypes type = args[0].type();

if (type == JSCTypes.NARRAY){

JSCNArray yRef = (JSCNArray) args[0];

System.out.println(yRef.doubleAt(0,0));

}

The system can be extended with arbitrary new types in a very straighforward
manner without interfering with existing types by just creating new realiza-
tions of JSCData. However, defining a new type for the core framework is not
a trivial task, because the new class should be thread-save, it must inform
listeners about changes in the data, it must be XML serializable and it must
be well-documented and tested. If necessary, there should also be GUI com-
ponents to access and modify the contents of a type. Future enhancements of
JStatCom could include types of complex numbers and arrays, or types for
arbitrary precision numbers and big integers. Even multi-dimensional arrays
could be considered.

Not all types that can be used within the framework have a corresponding Ox
type. More generally, every engine uses a subset of all available types in JS-
tatCom. However, a rich set of types on the Java side can make programming
much clearer and tends to reduce the amount of code necessary to accom-
plish certain tasks. Table 2 shows, how types are converted to Ox values. This
is always necessary, if procedures from an Ox module are called with input
and return parameters. Type conversion is handled automatically by the Ox
engine. There is only one limitation. It is currently not possible to produce
an OX ARRAY with mixed types from within Java, like {"y", 0, 3}. This is
needed for the Select method of the Ox Database class. A workaround is to
provide a wrapper class, which provides an Adapter to match the Java and
the Ox side. This will be shown in the advanced example later on.

JStatCom Type Represented Value Corresponding Ox Type

JSCInt integer value OX INT

JSCNumber double value OX DOUBLE

JSCNArray double array OX MATRIX

JSCString string OX STRING

11

JSCSArray string array n × 1: OX ARRAY filled
with n OX STRING values
n × m: OX ARRAY with
n OX ARRAY values, each
of them filled with m

OX STRING values

JSCVoid reference to any Java ob-
ject, especially domain
specific user-defined types,
can be useful together
with the Symbol Manage-
ment to share data across
components

none

JSCDate time series date none

JSCDRange range marked by two time

series dates

none

Table 2: Type conversion between JStatCom and Ox

3.2 Symbol Management

The Type System introduces various ways to store and manipulate data of
different kind. However, a common problem when designing applications for
complex models is, that various classes and GUI components need to share
data stored in instances of JSCData. For example, when a VAR model is ana-
lyzed, then there are variables that define the state of the model, like lags, sub-
set restrictions, data for endogenous, exogenous and deterministic variables,
and so on. The user interface is typically broken up into several components
that handle different modelling steps, like specification, estimation, diagnos-
tics and forecasting. All these components need to have access to the model
state. It would certainly not be a good idea to exchange data directly be-
tween these components, because this would create unnecessary dependencies
among them. Another anti pattern is of course to rely on global data, because
this would break data encapsulation, one of the principles of object-oriented
programming.

Gamma et al. (1995) suggest the State pattern in this case. A State could
be implemented as a class that represents a model, say VARState. This state
object could then be shared among all participating components. However,

12

the drawback of this approach is, that the developer would need to create a
VARState state class first and she would then have to find a mechanism to
publish it to all components that need access to it. The hypothetical VARState
class would become quite large soon, because it would have to store also the
names of variables, the estimation method and various other settings. Apart
from the effort of creating and maintaining such a class, this procedure does
not generate a standard way of creating GUIs for an arbitrary model, be-
cause it would most likely lead to different solutions for each model that
is implemented. The quality, extendability and maintainability of model im-
plementations would differ largely. Therefore it would be desireable to have
a straightforward way to represent and share the state of just any possible
model without the need to think about how to create state classes and how
to share them. This would also be a good example not only of class reuse,
but of design reuse, which is one of the major benefits of programming with
a framework.

Figure 5 gives a simplified overview of the Symbol Management system which
is the JStatCom solution to address the raised issues. It consists of a class
SymbolTable which is an aggregation of an arbitrary number of Symbol in-
stances. Each symbol object represents exactly one instance of JSCData. Sym-
bol objects are identified via their name in the symbol table, which operates as
a shared data repository. Via the symbol table it is possible to access the sym-
bol elements and finally the actual data values. Symbols can be understood
as pointers to variables. The referenced values, instances of JSCData, can be
changed efficiently during runtime, but not the type. For example, if a symbol
was initialized to point to a JSCInt, then a runtime exception would be gen-
erated when trying to set it to a JSCString. The SymbolTable can represent
the state of arbitrary models as an aggregation of symbols of different types.
It is therefore much more general, but also less specific than the previously
mentioned VARState class. All shared global data should reside in a symbol
table, which is then accessed by the components of a model.

One might ask, whether this is not just another way of introducing global data.
In a way it is, but there is another part of the Symbol Management system
which allows for fine-grained definition of access scopes. The question is, which
components can use a certain symbol table? JStatCom offers a way to limit
the visibility of symbol tables to only components that belong to one model.
Furthermore, it is possible to share data on different levels, which is some-
what similar to global and local variables. For this, the interface SymbolScope
is provided. Implementations of this interface have access to symbol tables
on three different levels: global, upper and local. Every symbol table keeps
a reference to the next higher symbol table in the hierarchy defined by im-
plementations of SymbolScope. The top level symbol table has only a null

reference instead.

13

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

<< interface >>
SymbolScope

+ global ():SymbolTable
+ upper ():SymbolTable
+ local ():SymbolTable

SymbolTable

+set(a:JSCData):void
+get(a:JSCTypeDef):JSCData

Symbol

+ type :JSCTypes

+ getJSCData():JSCData
+ setJSCData(a:JSCData):void

<< interface >>
JSCData *

1

 *

1

0..1

Fig. 5. Accessing shared data repositories

To be more specific, Figure 6 shows, how the SymbolScope interface is im-
plemented by components of the model. Every model should be implemented
with a ModelFrame as the top level component. This can be the starting point
for any application based on JStatCom. A ModelFrame is typically a compo-
sition of a number of ModelPanel components. Both classes provide access to
the Symbol Management system and can use it to set and retrieve variables.
The SymbolScope interface imposes a hierarchical ordering of symbol tables.
The ModelFrame and ModelPanel implementations of this interface use the
component hierarchy for this. Symbol tables are assigned as follows:

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

SymbolScope

<< interface >>

ModelFrameModelPanel

*

Fig. 6. SymbolScope inheritance

• ModelFrame - top level component, global, local and upper are equivalent
and return the top level symbol table

• ModelPanel

· local - returns the symbol table created by this panel
· upper - searches the component hierarchy upwards until an instance of
SymbolScope is found and returns the result of a call to local on the com-
ponent found; if no parent instance of SymbolScope exists, this.local is
used

14

· global - searches the component hierarchy upwards until an instance of
SymbolScope is found and returns the result of a call to global on the
component found(if this instance is a ModelPanel, it will search itself for
the next higher component, and so on, typically the global table defined
in ModelFrame is reached); if no parent instance of SymbolScope exists,
this.local is used

It should be noted, that this process is done automatically. Developers should
only understand, that ModelPanels can be used to define access scopes. One
could also think of other possible implementations of SymbolScope, reflecting
different hierarchical schemes. However, for the purpose of GUI building, this
solution has proven to be very fruitful.

One might be tempted to compare ModelFrame to the ModelBase class in Ox.
The only similarity is, that both classes should be subclassed to create a new
model. ModelFrame does not provide any model specific functionality, except
the access methods to the symbol table. No specific structure for components,
behaviour or modeltypes is imposed. But theoretically, one could implement
the functionality of ModelBase in a specific ModelFrame implementation to
provide further standardization for a distinct problem domain.

Figure 7 sketches, how classes for a VAR model interface could be laid out
with ModelFrame and ModelPanel. The top level component for the model is
VARFrame which is composed of a panel for model specification and a panel
for residual analysis. The latter is itself composed of a panel for diagnostic
tests. Each panel can access the Symbol Management system easily, because
it inherits the access methods local, upper, global from SymbolScope.

A snapshot of the object structure at runtime is presented in Figure 8. The
entities of the diagram are now objects instead of classes. It can be seen,
that the instance frame of the class VARFrame has a link to a symbol table
global. This is usually the place to store variables that should be shared by
all panels that a certain model frame is composed of. It cannot be accessed
by panels from other model frames, at least not by default. In a VAR context,
the global symbol table should contain the selected data and lags, estimated
coefficients, standard deviations, names of variables, etc.. Model panels, like
panel1 for specification and panel2 for residual analysis, have access to the
global symbol table via their global method. However, a further refinement
is, that data can also be shared on lower levels. For example, it might be that
some data is shared by panels belonging to the residual analysis only, which
are children of ResAnPanel. Therefore the respective symbol table local2

can be accessed via the upper method by panel21, the object to hold the
diagnostic tests interface. But panels might also use a symbol table to store
variables that are not used by other components, for example test statistics
and p-values of diagnostic tests might go to local21. This data need not to

15

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

VARFrame

VARSpecPanel

ModeFrame

ModelPanel
ResAnPanel

DiagTestsPanel

SymbolScope
1

1

1
1

1

1

Fig. 7. Class structure of a hypothetical VAR frame

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition

frame :VARFrame

global :SymbolTable

panel1 :VARSpecPanel local1 :SymbolTable

panel2 :ResAnPanel local2 :SymbolTable

panel21 :DiagTestsPanel local21 :SymbolTable

Fig. 8. Snapshot of model objects and shared data with different scopes

be shared, but it might still be reasonable to put it in a local symbol table.
However, the local symbol table of a panel is the upper symbol table of child
components, thus local2 can be accessed by panel21.

16

Storing data in symbol tables is not only meaningful when variables should be
shared, but it can also be used to publish the results in the Symbol Control
system, which is another subsystem of JStatCom that provides access to vari-
ables that are currently used. A desription is omitted here, but it presents a
tree view of the symbol table hierarchy and it has components to display and
export all symbols that have been put in one of the symbol tables.

The following small Java code example should demonstrate the workings of
the Symbol Management system. It corresponds to the class diagram in Fig-
ure 7, but only sketches the contents of the concrete implementations. The
VARFrame binds all panels together and should provide a mechanism to navi-
gate between them. VARSpecPanel should contain a mechanism to select series
and to specify lags. JStatCom provides several special components for that
purpose, but they are not described here. As a placeholder for this, only a
JSCString with the estimation method is stored globally. The ResAnPanel
sets the names of the residual series locally in its setResidNames method.
Thus, they can be accessed by child panels, like DiagTestsPanel. The method
DiagTestsPanel.executeTests invokes the test procedures. The respective
input parameters can easily be retrieved by their names from the global and
upper symbol tables. The actual tests would typically be invoked via the En-
gine system, which is described in the next section.

// top level class, contains various panels

public class VARFrame extends ModelFrame {

private ResAnPanel resAnPanel;

private VARSpecPanel vARSpecPanel;

...

// constructor

public VARFrame(){

super("VARFrame");

// add menubar or tabbed pane

// add panels

...

}

} // end VARFrame

// panel for model specification

public class VARSpecPanel extends ModelPanel {

...

// sets estimation method as JSCString to global table

private void setEstimationMethod(){

global().set(new JSCString("EstimationMethod", "OLS"));

}

} // end VARSpecPanel

17

// panel for residual analysis

public class ResAnPanel extends ModelPanel {

public DiagTestsPanel diagTestsPanel;

...

// constructor

public ResAnPanel(){

super();

// add child panels, maybe with a tabbed pane

}

// set the names of the residuals in local table

// local table is upper table for child ModelPanels

private void setResidNames(){

local().set(new JSCSArray("ResNames",

new String[]{"u1", "u2", "u3"}));

}

} // end ResAnPanel

// ModelPanel to carry out diagnostic tests

public class DiagTestsPanel extends ModelPanel {

...

// gets estimation method from global table

// and residual names from upper table

private void executeTests(){

JSCString estMeth = global().get("EstimationMethod")

.getJSCString();

JSCSArray resNames = upper().get("ResNames").getJSCSArray();

... // invoke procedure via Engine system

}

} // end DiagTestsPanel

This code should only give an idea of how the Symbol Management system
could be used. It has the advantage, that there are fewer direct connections
between components. DiagTestsPanel, for example, does not know anything
about VARSpecPanel, although it uses variables that were set by this panel.
The code sketch here uses plain strings to define variables. This is suitable
only for small applications, because one might easily mix up names, especially
if there are many variables. A much better way is to create a separate class
with the definitions of all shared variables in a certain scope. The framework
supports this with the class JSCTypeDef, which can be used to define variables
with their name, the type and an optional description. Using this way of defin-
ing shared data helps greatly to manage even large GUI systems with many
variables. It is part of the design guidelines to build extendable applications
with JStatCom.

18

3.3 Engine System

This section introduces the system for communicating to different execution
engines. Typically these engines rely on external resources, which means that
extra software packages or libraries must be installed. For the Ox engine, the
installation of Ox console is required together with the extra packages that
are used. The inner workings of the Engine system are not described here, but
rather how clients can use it.

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Engine
<< interface >>

+call(procName:String,args:JSCData[],rtn:JSCData[]):void
+isValid(type:JSCTypes):boolean
+shutdown():void
+stop():void
+load(module:String,loadType:LoadTypes,args:JSCData[]):void

OxEngine GaussEngine MLabEngine StubEngine GRTEngine

Fig. 9. Engine interface and available implementations

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition Poseidon for UML, Community Edition

EngineTypes

+OX:EngineTypes
+GRTE:EngineTypes

+getEngine():Engine

OxEngineType

GRTEngineType

<< interface >>
Engine

OxEngine

GRTEngine

LoadTypes

OxLoadTypes

+OXO:OxLoadTypes
+CLASS:OxLoadTypes
+VIEWER:OxLoadTypes

GRTELoadTypes

+GLOBAL:GRTELoadTypes
+GCG:GRTELoadTypes

Client

Fig. 10. Client using the Engine system

19

The framework tries to provide access to different engine implementations via
a unified interface. Figure 9 presents the complete interface Engine and all
implementations currently available. Clients should use the engine only via its
abstract implementation, thus having the same calls for every implementation.
However, this is a big challenge and experience has shown, that it is not fully
achievable, because engines differ significantly in terms of calling semantics.
For example, the Ox engine allows to create objects from classes, which is not
supported by the GAUSS engine. Although not impossible, it would not seem
reasonable to try to generalize all potential action types in a unified interface.
For this reason, the engine interface provides the parametrized function load

to address these issues. The method takes a parameter of type LoadTypes that
defines the specific action to carry out.

Figure 10 gives a class diagram for an arbitrary client class that uses the Engine
system. For clarity, only two concrete engine implementations are displayed.
The graphic shows, that clients use the abstract class EngineTypes and the
interface Engine without knowing anything about the implementing classes in
the background. But clients must also use the load types that are especially
designed for the used engine to call the load method, thus implementation
differences leak through the interface. However, this is not a severe compli-
cation, given the amount of flexibility that is achieved. Any other differences
between engines are completely hidden from clients.

The solution found manages to integrate engines with very different charac-
teristics and calling conventions. Therefore it is likely, that the system will
also allow to add communications interfaces to many software packages that
might be used for mathematical computations. Planned extensions are the
integration of R, Mathematica and Xplore. This undertaking is supported by
the fact, that tool vendors often supply programming interfaces to control
the respective software from an external application, examples are the Ox C-
API, the Gauss Runtime Engine, the J/Link package for Mathematica or the
MD*Crypt library for Xplore, to name just a few.

3.4 Calling the Ox Engine

The Ox implementation of the Engine system supports the following basic
functions:

• loading of one or more modules (.ox or .oxo files) with class definitions and
static functions

• creating an instance of a class which is then the set to be the current object
• calling member functions of the current object with input arguments and

return parameters of compatible types

20

This set of operations imposes several restrictions on the use of the Ox engine.
First, it is not possible to call a static function defined in a module directly
from Java. This is, because there is no API function provided that retrieves
the address of a function by its name. Therefore it is necessary to define
an Ox class with the needed member functions. It is then possible to create
an instance of that Ox class from Java and call the provided methods. This
approach can always be used to call static functions via adapter methods laid
out in an Ox class.

Another limitation is, that only one Ox object is referenced at a time. When-
ever a new object is created, this is set to be the current object and all methods
would be called on that one, until a new object is created. However, the Ox
interface is not meant to manage the interaction of various Ox classes from
Java. Instead one should think of it as an entry point to an Ox module via a
single class. This class is similar to the main method of an Ox program. The
used pattern is a Facade, because the Ox class used by the Java side can serve
as an interface to a possibly complex system of Ox classes.

Furthermore, it is not possible to use all available Ox types in the methods
that should be called from Java. One is restricted to numbers, arrays, strings
and string arrays, which can be converted to and from Ox. Object references,
function pointers or mixed type Ox arrays cannot be used. If Ox methods
with these parameters must be called, the input arguments must be prepared
within the wrapper class that connects Java and Ox.

The limitations discussed should not be severe in most cases. The system still
provides a lot of flexibility and it should be possible to connect about any
Ox module to a JStatCom GUI. The requirement to have a single class that
provides methods that can be called from Java could actually be seen as an
enforcement to use object-oriented programming, not only on the Java side,
but also in Ox.

A last remark is on the use of graphics functions in Ox modules. These func-
tions can only be linked with the Ox professional version when Ox is used
via its C-API. But it is possible to install and use the GnuDraw package for
Ox, which can be used to provide the graphics functions instead. The external
software GnuPlot is also required. It is a powerful open-source tool, which is
published under the GNU license.

3.5 Portability

Applications based on JStatCom are usually written in Java and are therefore
portable to most operating systems. But if a certain engine is used, portability
is restricted to the operating systems that are supported by that engine. Lim-

21

itations stem from the fact, that usually system specific dynamic link libraries
are required. Those dlls might only be available to a certain operating system.
If Ox is used as an engine, a wide range of different systems are supported.
However, it is necessary to use the correct version of the dynamic link library
that manages the link between the C-API and Java via the JNI (Liang, 1999).
But it poses no problems to compile this library for a number of operating
systems. Applications based on JStatCom that use the Ox engine can there-
fore be run on any platform that is supported by Ox. If GnuPlot is used for
the graphics, this poses no further restrictions, because it is also available for
all major operating systems.

3.6 Introductory Example

A small code example demonstrates a typical call to the Ox engine via the
Engine interface. It is assumed, that the used modules exist in the OxEngine

resource directory jox. Resources contain the algorithm implementations for
an engine and there are special directories, where JStatCom looks for them. By
convention, this is a subdirectory which starts with a j followed by the name
of the engine, thus jox, jgrte, jgauss, jstub and jmlab. The Ox engine also
needs to know the location of the dynamic link library that contains the func-
tions used by the Ox C-API. On Windows this library is named oxwin.dll.
The Engine system has an elaborate configuration management, which is used
to gather environment settings from a configuration file, and, if something is
missing or wrong, from the user directly. The required settings vary from en-
gine to engine. But all engines store information in a file engine config.xml

in the respective resource directory.

For this introductory example, a very simple Ox class is assumed. It should
be defined in jox/mymodule.ox, relative to the JStatCom installation folder.
A more elaborate real world Ox module will be presented in the next section.

#include <oxstd.h>

class MyClass{

decl a, x;

MyClass(const arg);

setX(const x);

getX();

}

MyClass::MyClass(const arg){

a = arg;

}

22

MyClass:setX(const x){

this.x = x;

}

MyClass:getX(){

return x;

}

The Java code might then be:

// EngineTypes stores all available engine types

// ox is an instance of OxEngine, but the client

// does not use this information

Engine ox = EngineTypes.OX.getEngine();

// parametrized call to load with OxLoadTypes referenced,

// puts mymodule.ox(o) in Ox workspace, no arguments

ox.load("mymodule", OxLoadTypes.OXO, null);

// another load call, equivalent to decl x = new MyClass(3);

// MyClass must be defined in mymodule.ox(o)

// x is the object from which member functions can be called

ox.load("MyClass", OxLoadTypes.CLASS,

new JSCData[]{new JSCInt("arg", 3)});

// call to member function: x.setX(3.4)

ox.call("setX", new JSCData[]{new JSCNumber("x", 3.4)}, null);

// initialize result with an empty number object

JSCNumber result = new JSCNumber("result");

// call to member function: x.getX()

ox.call("getX", null, new JSCData[]{result});

// result.doubleVal() == 3.4 now

This code snipnet has not created any user interface components, but demon-
strates, how the Type System together with the Engine system could be used
to make a call to an Ox resource. The Symbol Management is not involved
here, because no data is shared. It will be used in the following real world
example.

23

4 Programming with the Framework

After introducing the system JStatCom as a whole and describing some of
its core elements, this section presents a more realistic development scenario.
The example will show, how the Ox MSVAR package (Krolzig, 1998) could be
used to create an application for Markov-Switching VAR analysis. However,
for simplicity only the most basic features are implemented. But it should be
straightforward to extend this example to turn it into a useful software. It
should be mentioned that the MSVAR package is already implemented as a
subclass of the Ox class ModelBase, such that it can be used with the GiveWin
system, providing a graphical user interface. Therefore, this example can be
used to compare the different implementations and the pros and cons of each
system.

The JStatCom implementation gives more freedom to design the user inter-
face and to combine the Ox package with other modules that are not directly
related to it. One could even combine procedures written in Ox with algo-
rithms implemented in other languages, such as Gauss or Matlab. The obvious
drawback is that coding in Java is required, and that more code needs to be
produced. In this respect, the Ox solution is, not surprisingly, simpler. On the
other hand, one could customize JStatCom to create a subclass of ModelFrame
which already has quite similar functionality to the ModelBase class. Instances
of that new class could be configured by a relatively simple settings file, for
example. This would be an extension of the framework for a specific problem
domain.

4.1 Typical Steps

Creating applications with JStatCom consists of a number of steps that are
always similar. Here it is assumed, that an Integrated Development Environ-
ment (IDE) is used. This is a software to support Java development projects.
There is a number of tools available, some of them are Open-Source, like for ex-
ample Eclipse. Development with an IDE is dramatically more efficient than
using only a text editor and a compiler, especially when projects grow and
when GUI layout is needed. However, it is by no means required to use such a
tool, and a simple application could also be created “by hand”. This text will
not describe, how projects are set up with a specific software, however, there
is detailed documentation on the web. The general steps in the development
process are:

(1) download and unpack JStatCom
(2) set up a Java project with your favourite IDE, put jstatcom.jar and all

24

jar archives from the jars subdirectory in the classpath that is used by
your development tool

(3) create your top level component by subclassing ModelFrame, choose an
appropriate name and title, and compile it (typically done automatically
by IDE)

(4) put the fully qualified classname of your frame in the file modules.xml,
for example add the line: <Module class="msvar.MSVARFrame"/>

(5) start your application with the batch file app.bat, maybe you need to
add the classpath of your newly created class before, check it

(6) now go back to your development tool and implement all panels, use
subclasses of ModelPanel if you need access to shared data

(7) implement calls to the external modules implementing the math algo-
rithms, put all Ox modules that are used in the jox subdirectory, set up
and run sets of automated unit tests for all engine calls

(8) repeat 5, 6 and 7 until all features are implemented, create a deployable
version (for example, just zip the project directory)

One should also provide documentation for the user as a helpset. The add-on
tool JHelpDev can be used to create a JavaHelp set from a directory with
HTML files. It can then easily be integrated in the application, even with
context-sensitive help. Together with Latex2html or other converters, one
could write the helpsystem completely in Latex, which is especially useful
if many formulas are used. But details are omitted here.

In step 4 one puts the classname in a configuration file modules.xml. This way,
the new frame will be recognized as a module when the JStatCom TopFrame

is invoked. This is the true top level component of all model frames and it
provides general functionality for importing data, transforming time series,
accessing model frames and providing the helpsystem. The TopFrame is some-
what similar to GiveWin, but it can be configured in many ways. Some simple
adjustments, like title, version, splashscreen and about-information can be set
in the file app.properties. If further changes are wanted, one would have
to subclass TopFrame. This way, almost everything can be changed in the
behaviour and appearance of the application.

4.2 Creating a GUI

As already mentioned, the MSVAR Ox package is used together with JStat-
Com to create an application that is able to apply the provided methods on
arbitrary datasets. However, the MSVAR package is very flexible and contains
various modelling features. A GUI for it could become quite complex, therefore
for this motivating example only a small subset of all features is implemented.

25

The MSVAR package comes with several example files, one of them is the
following:

/**

* MSM(2)-AR(4) Model of the US Business Cycle

* see: Hamilton (1989), Econometrica 57, 357-384.

* (c) Hans-Martin Krolzig, Oxford, 2002

*/

#include <oxstd.h>

#import <msvar130>

main()

{

decl msvar = new MSVAR();

msvar->IsOxPack(FALSE);

msvar->Load("gnp82.xls");

msvar->Select(Y_VAR, {"DUSGNP", 0, 4});

msvar->SetSample(1951,1,1984,4);

msvar->SetModel(MSM, 2);

format(120);

msvar->Estimate();

msvar->StdErr();

msvar->PrintStdErr();

}

It estimates a Markov-Switching AR model with a variable mean and two
regimes. The transition probabilities are assumed to be constant, as well as
the variances and the autoregressive parameters. It is possible to reproduce the
results presented in Hamilton (1989) with this code. A GUI for this should
provide an interface to load the data, set the sample, specify the number
of AR lags and estimate the model. This way one could use the method to
identify business cycles in different countries. All other possible variations, like
changing the number of regimes, estimating a VAR, allowing for exogenous
variables, and changing the type of the switching-regression, are omitted here
for clarity. Adding them would be a straightforward extension of this example.

First the Ox wrapper module msvarwrapper.ox is given, providing an adapter
class for the OxEngine. It should be noted, that one could also have used only
the header of this file to load the msvar package into the workspace. In this
case, an MSVAR object could have been created directly from Java. However,
because the Select method takes a mixed type array as argument, it would
not have been possible to call it directly from Java. Therefore the wrapper
class is needed. It serves as an adapter between the OxEngine and the MSVAR
class. MSVARWrapper is a subclass of MSVAR and inherits all methods from
that class. It can be used instead of MSVAR with the same calling semantics.
This is very handy and always possible, because Ox has no mechanism to
restrict inheritance, like for example Java with the final keyword. From the

26

include statements it can be seen, that msvar and gnudraw are needed, with-
out gnudraw, the module would not link when called from Java, because the
graphics functions would not be found.

#include <oxstd.h>

#include <packages/gnudraw/gnudraw.h>

#import <msvar130>

class MSVARWrapper:MSVAR {

MSVARWrapper();

SelectY(const name, const startLag, const endLag);

PrintSetup(const number, const fName);

}

MSVARWrapper::MSVARWrapper(){

MSVAR();

}

MSVARWrapper::SelectY(const name, const startLag, const endLag){

Select(Y_VAR,{name, startLag, endLag});

}

MSVARWrapper::PrintSetup(const number, const fName){

format(number);

fopen(fName, "l");

} // end of msvarwrapper.ox

One can see, that the problematic Select method is now interfaced by SelectY.
The style of the adapter currently only allows to select a single variable, there-
fore only an AR model is allowed. For more variables, arrays of the respective
names, start and end lags could be used as parameters and the selection array
could be created via a loop. There should also be different select methods, like
SelectX for exogenous variables, SelectT for the threshold and SelectS for
the regimes. The method PrintSetup is needed to call static functions that
are not members of a class, which are format and fopen.

Now the top level frame for the MSVAR analysis GUI module is given. It
is a subclass of ModelFrame, although in this simple example a standard
JInternalFrame, the superclass of ModelFrame, would have been sufficient.
This is, because there is just one panel contained, and the global symbol table
could therefore as well be the local table of the specification panel. However,
using ModelFrame should be the default and has no recognizable performance
implications.

27

package msvar;

import com.jstatcom.model.ModelFrame;

public class MSVARFrame extends ModelFrame {

private msvar.MSVARSpecPanel msvarSpecPanel = null;

public MSVARFrame() {

super();

initialize();

}

// init tasks, generated by IDE

private void initialize() {

this.setContentPane(getMSVARSpecPanel());

this.setTitle("MSVAR Analysis");

this.setSize(543, 505);

}

// adds specification panel, generated by IDE

private msvar.MSVARSpecPanel getMSVARSpecPanel() {

if (msvarSpecPanel == null) {

msvarSpecPanel = new msvar.MSVARSpecPanel();

}

return msvarSpecPanel;

}

} // end of MSVARFrame.java

The next code section contains the Java class msvar.MSVARSpecPanel with
the specification panel and the Ox call. Here the main work is done, which is
variable selection, lag input, estimation invocation and output presentation.
This class uses several JStatCom components that are very helpful in that
context, namely TSSel for variable selection, ResultField to present output
and NumSelector to retrieve lag input that is validated against a predefined
range. The use of these components is not described here in detail, this is
left to the Java API documentation. The rest of the graphical components
involved are standard Swing beans (Eckstein et al., 1998).

Although the code is pretty long, one has to note, that most of it can be gen-
erated with a visual layout tool, similar to Visual Basic. These code sections
are marked with “generated by IDE”. Such a tool should be part of the IDE
software that is used. With a bit of experience, one can develop even com-
plex GUIs in little time. Especially layout management needs a bit of care
sometimes, but this is not discussed here.

28

package msvar;

import com.jstatcom.engine.*;

import com.jstatcom.engine.ox.*;

import com.jstatcom.io.*;

import com.jstatcom.model.*;

import com.jstatcom.ts.*;

import java.awt.event.*;

import java.io.*;

// Specification of MSVAR model.

public class MSVARSpecPanel extends ModelPanel {

private com.jstatcom.ts.TSSel tsSel = null;

private javax.swing.JButton jButton = null;

private com.jstatcom.component.NumSelector numSelector = null;

private javax.swing.JLabel jLabel = null;

private com.jstatcom.component.ResultField resultField = null;

private javax.swing.JPanel jPanel = null;

// default constructor, generated by IDE

public MSVARSpecPanel() {

super();

initialize();

}

// init method, generated by IDE

private void initialize() {

this.setLayout(new java.awt.BorderLayout());

this.setSize(550, 503);

this.add(getTSSel(), java.awt.BorderLayout.EAST);

this.add(getJPanel(), java.awt.BorderLayout.CENTER);

}

// time series selector, generated by IDE

private com.jstatcom.ts.TSSel getTSSel() {

if (tsSel == null) {

tsSel = new com.jstatcom.ts.TSSel();

tsSel.setEndogenousDataName("Y_VAR");

tsSel.setEndogenousStringsName("Y_NAMES");

tsSel.setExogenousDataName("X_VAR");

tsSel.setExogenousStringsName("X_NAMES");

tsSel.setDateRangeName("MSVAR_DRANGE");

tsSel.setOneEndogenousOnly(true);

}

return tsSel;

}

// estimate button with listener

private javax.swing.JButton getJButton() {

if (jButton == null) {

jButton = new javax.swing.JButton();

29

jButton.setText("Estimate");

// connects action to estimate button

jButton.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

// usage of PCall system, creates extra Thread

PCall job = new PCall() {

// mimics the main method of hamilton example

public void runCode() {

Engine ox = engine();

ox.load("msvarwrapper", OxLoadTypes.OXO, null);

ox.load("MSVARWrapper", OxLoadTypes.CLASS, null);

ox.call("IsOxPack", new JSCData[]{

new JSCInt("oxPack", false)}, null);

TSDateRange range = global().getSymbol(

"MSVAR_DRANGE").getJSCDRange().getTSDateRange();

ox.call("Create", new JSCData[]{

new JSCInt("freq", range.subPeriodicity()),

new JSCInt("main_l", range.lowerBound().mainPeriod()),

new JSCInt("period_l", range.lowerBound().subPeriod()),

new JSCInt("main_u", range.upperBound().mainPeriod()),

new JSCInt("period_u", range.upperBound().subPeriod())},

null);

JSCNArray data = global().getSymbol("Y_VAR")

.getJSCNArray();

JSCSArray namesY = global().getSymbol("Y_NAMES")

.getJSCSArray();

ox.call("Append", new JSCData[]{data, namesY}, null);

ox.call("SelectY", new JSCData[]{

new JSCSArray("aName", namesY.stringAt(0, 0)),

new JSCInt("startLag", 0),

new JSCInt("endLag", getNumSelector().getIntNumber())},

null);

ox.call("SetSample", new JSCData[]{

new JSCInt("main_l", range.lowerBound().mainPeriod()),

new JSCInt("period_l", range.lowerBound().subPeriod()),

new JSCInt("main_u", range.upperBound().mainPeriod()),

new JSCInt("period_u", range.upperBound().subPeriod())},

null);

ox.call("SetModel", new JSCData[]{new JSCInt("MSM", 5),

new JSCInt("regimes", 2)}, null);

String fName = JSCConstants.getSystemTemp()

+ "/msvar.out";

ox.call("PrintSetup", new JSCData[]{

new JSCInt("width", 120),

new JSCString("outFile", fName)}, null);

ox.call("Estimate", null, null);

ox.call("StdErr", null, null);

30

ox.call("PrintStdErr", null, null);

// appends output generated in Ox to output buffer

output.append(FileSupport.readTextFile(fName) + "\n\n");

new File(fName).delete();

}

public Engine engine() {

return EngineTypes.OX.getEngine();

}

};

job.setName("MSVAR Call");

// sets result field as output component

job.setOutHolder(getResultField());

// queues the job in the background thread

job.execute();

}

});

}

return jButton;

}

// number range, generated by IDE

private com.jstatcom.component.NumSelector getNumSelector() {

if (numSelector == null) {

numSelector = new com.jstatcom.component.NumSelector();

numSelector.setRangeExpr("[0, 10]");

}

return numSelector;

}

// lags label, generated by IDE

private javax.swing.JLabel getJLabel() {

if (jLabel == null) {

jLabel = new javax.swing.JLabel();

jLabel.setText("Endogenous lags");

}

return jLabel;

}

// result field, generated by IDE

private com.jstatcom.component.ResultField getResultField() {

if (resultField == null) {

resultField = new com.jstatcom.component.ResultField();

}

return resultField;

}

// add all components, generated by IDE

private javax.swing.JPanel getJPanel() {

if (jPanel == null) {

// constraints for layout omitted, generated automatically

31

jPanel.add(getResultField(), consGridBagConstraints1);

jPanel.add(getNumSelector(), consGridBagConstraints2);

jPanel.add(getJLabel(), consGridBagConstraints3);

jPanel.add(getJButton(), consGridBagConstraints4);

}

return jPanel;

}

}

The example code contains the method getTSSel to initialize the time se-
ries selector. One can set the names of the variables that are selected. They
will be stored in the global symbol table under the respective names. The
getNumSelector method sets up the number selector with the interval [0, 10].
Whenever input validation fails, a dialog is shown and the value is set back
to the previous one.

But the most interesting method to look at is getJButton. Here the estimate
button is configured and an action listener is attached. This listener invokes
the call to the engine and mimics the behaviour of the main method in the
MSVAR example file. There is the PCall system involved here, which is used
to handle procedure calls. It is not mandatory to use this system, but it has
many advantages. One of the major benefits is, that it can execute the call in
a new thread. This way the GUI is still reactive, even if a lengthy computation
is running. There is not a new thread for every PCall invocation, but instead
a background thread is used, and new calls are queued until the previous call
has finished. By calling the PrintSetup method of the Ox adapter class, the
output is redirected to a file, which is known by the Java side. The contents
of this file are then appended to the output buffer. The PCall system sets the
contents of this buffer automatically to the output holder, which is the result
field in this case. This way, text formatting on the Java side is not necessary.

4.3 Critique of the Implementation

Although the example reflects a real world situation and could serve as a
starting point for a full featured analysis module, there is much potential to
improve the presented implementation. First, the names of the global variables
are just given as strings where they are needed. If one chooses to change the
name of a variable, this would have an impact on all parts of the code where
the variable is used. Especially if there are many variables to be shared, an
extra class with the type definitions is worth being considered. Type defini-
tions should not be implemented as plain strings, but rather as instances of
JSCTypeDef. An example class could be:

32

final class MSVARConstants {

public static final JSCTypeDef Y_VAR = new JSCTypeDef(

"Y_VAR", JSCTypes.NARRAY,

"The selected endogenous variables, no lag truncation.");

public static final JSCTypeDef Y_NAMES = new JSCTypeDef(

"Y_NAMES", JSCTypes.SARRAY,

"The names of the selected endogenous variables.");

...

}

Instead of using strings, one should use these type definitions to reference
variables. A side effect is, that the descriptions are put in the Symbol Control
system when the symbol is referenced with this definition for the first time:

// initialization in getTSSel

tsSel.setEndogenousDataName(MSVARConstants.Y_VAR.name);

// reference to endogenous variables

global().get(MSVARConstants.Y_VAR).getJSCNArray();

Another obvious drawback is the nesting of the estimation call within the
MSVARSpecPanel. It is much better to separate the procedure call in an extra
class, which is an example of the Command pattern. This has the advantage,
that calling logic and GUI code would be better separated. One could use the
new class not only in one place, but it could be reused internally. This could
be useful for a command implementing a call to display the autocorrelation
function, for example. Another big advantage would be, that the class could
also be created and checked with the help of automated unit tests, an invalu-
able tool to improve the quality of code that is under constant change. Any
input parameters would have to be set in the constructor, the code might then
be:

public final class MSVAREstCall extends PCall {

private JSCNArray data;

private JSCSArray namesY;

private int lags;

private TSDateRange range;

private String fName = JSCConstants.getSystemTemp()

+ "/msvar.out";

public MSVAREstCall(JSCNArray y, JSCSarray names,

int arLags, TSDateRange range){

setName("MSVAR Call");

// maybe check inputs and copy values here

this.yDat = y;

this.nam = names;

this.lags = arLags;

33

this.range = range;

}

public void runCode() {

Engine ox = engine();

ox.load("msvarwrapper", OxLoadTypes.OXO, null);

ox.load("MSVARWrapper", OxLoadTypes.CLASS, null);

ox.call("Create", new JSCData[]{

new JSCInt("freq", range.subPeriodicity()),

new JSCInt("main_l", range.lowerBound().mainPeriod()),

new JSCInt("period_l", range.lowerBound().subPeriod()),

new JSCInt("main_u", range.upperBound().mainPeriod()),

new JSCInt("period_u", range.upperBound().subPeriod())},

null);

ox.call("Append", new JSCData[]{data, namesY}, null);

ox.call("SelectY", new JSCData[]{

new JSCSArray("aName", namesY.stringAt(0, 0)),

new JSCInt("startLag", 0),

new JSCInt("endLag", lags)}, null);

ox.call("SetSample", new JSCData[]{

new JSCInt("main_l", range.lowerBound().mainPeriod()),

new JSCInt("period_l", range.lowerBound().subPeriod()),

new JSCInt("main_u", range.upperBound().mainPeriod()),

new JSCInt("period_u", range.upperBound().subPeriod())},

null);

ox.call("SetModel", new JSCData[]{new JSCInt("MSM", 5),

new JSCInt("regimes", 2)}, null);

ox.call("PrintSetup", new JSCData[]{

new JSCInt("width", 120),

new JSCString("outFile", fName)}, null);

ox.call("Estimate", null, null);

ox.call("StdErr", null, null);

ox.call("PrintStdErr", null, null);

}

public void finalCode(){

// appends output generated in Ox to output buffer

output.append(FileSupport.readTextFile(fName) + "\n\n");

new File(fName).delete();

}

public Engine engine() {

return EngineTypes.OX.getEngine();

}

};

Currently this class only prints the results in text form. It would be desirable
to read residuals, coefficient estimates, standard deviations, etc. back to Java.
This can easily be implemented by just calling the respective methods of the
MSVAR class. One could also factor some of the calls to the Ox wrapper class to

34

reduce the number of calls that are necessary from the Java side. For example,
the creation of a database, appending variables and setting the sample could
all be done within the SelectY method. The code required in Java would
become much shorter.

These final remarks indicate some of the design guidelines that can be used for
applications based on JStatCom. The idea is to have a set of best practices that
ensure a high quality class design, which can easily be maintained, extended
and tested.

5 Conclusion

It was shown, how the software framework JStatCom could be used to cre-
ate graphical user interfaces for econometric routines with the help of Ox.
The approach was demonstrated for an example application, which could well
be extended to establish a useful system. Various subsystems of JStatCom
address common problems that are inherent when designing graphical user
interfaces for complex mathematical algorithms. A strong emphasis was put
on the extendability and flexibility of the framework. It is hoped, that the
presented approach is still simple enough to serve as a development platform
for researchers in the field, who want to make available their algorithms to
interested users.

References

Ashworth, M., Allan, R., Mller, C., van Dam, H., Smith, W., Hanlon, D.,
Searly, B. and Sunderland, A. (2003). Graphical user environments for sci-
entific computing, Technical report, Computational Science and Engineering
Department, CCLRC Daresbury Laboratory, Warrington.
URL: http://www.ukhec.ac.uk/publications/reports/guienv.pdf

Beck, K. (1999). Extreme Programming Explained: Embrace Change, 1st edn,
Addison-Wesley.

Benkwitz, A. (2002). The Software JMulTi: Concept, Development and Ap-
plication in VAR Analysis, Dissertation, Humboldt-Universitt zu Berlin.

Bianchi, A., Caivano, D., Lanubile, F. and Visaggio, G. (2001). Evaluating
software degradation through entropy, Proc. 7th IEEE International Soft-
ware Metrics Symposium, London, pp. 210–219.

Bloch, J. (2001). Effective Java, Addison-Wesley.
Boisvert, R. F., Moreira, J., Philippsen, M. and Pozo, R. (2001). Numerical

Computing in Java, Computing in Science and Engineering 3(2): 18–24.
URL: http://citeseer.ist.psu.edu/409642.html

35

Boisvert, R. F. and Tang, P. T. P. (eds) (2001). The Architecture of Scientific
Software, IFIP TC2/WG2.5 Working Conference on the Architecture of
Scientific Software, October 2-4, 2000, Ottawa, Canada, Vol. 188 of IFIP
Conference Proceedings, Kluwer.

Booch, G., Rumbaugh, J. and Jacobsen, I. (1999). The Unified Modeling
Language User Guide, Addison-Wesley.

Deutsch, L. P. (1989). Design reuse and frameworks in the Smalltalk-80 sys-
tem, in T. J. Biggerstaff and A. J. Perlis (eds), Software Reusability, Volume
II: Applications and Experience, Addison-Wesley, Reading, MA, pp. 57–71.

Doornik, J. (2002). Object-oriented Programming in Econometrics and Statis-
tics using Ox: A Comparison with C++, Java and C#, in S. Nielsen (ed.),
Programming Languages and Systems in Computational Economics and Fi-
nance, Dordrecht: Kluwer Academic Publishers, pp. 115–147.

Doornik, J. and Ooms, M. (2001). Introduction to Ox, Timberlake Consultants
Press, London.

Eckstein, R., Lay, M. and Wood, D. (1998). JAVA Swing, O’Reilly.
Gamma, E., Helm, R., Johnson, R. and Vlissides, J. (1995). Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading,
MA.

Hamilton, J. D. (1989). A New Approach to the Economic Analysis of Nonsta-
tionary Time Series and the Business Cycle, Econometrica 57(2): 357–384.

Johnson, R. E. and Foote, B. (1988). Designing reusable classes, Journal of
Object-Oriented Programming 1(2): 22–35.

Krolzig, H.-M. (1998). Econometric Modelling of Markov-Switching Vector
Autoregressions using MSVAR for Ox. Department of Economics, Univer-
sity of Oxford.

Liang, S. (1999). Java Native Interface, Addison-Wesley.
Uhlig, H. (1999). A Toolkit for Analysing Dynamic Stochastic Models easily,

in R. Marimom and A. Scott (eds), Computational Methods for Study of
Dynamic Economies, Oxford University Press, chapter 3.

36

